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1. Introduction

Sedimentation in the study area was controlled largely

by tectonics. The historical record indicates that sub

THE PRESENT study deals with the evaluation of petrophysics for reservoir and source rock

throughout constructing structure depth maps for the picked horizons of the Jurassic section and
identifying the elements of the petroleum system. The petrophysical results exhibited that the Jurassic
reservoirs show the presence of sandstone with some calcareous cement in all studied wells. Results
of well log analysis of the Upper Safa reservoir showed that the thickness of the net effective pay in
the studied area ranges between 28 and 70 ft., with an average effective porosity of 9%, an average
hydrocarbon saturation of 78%, and an average permeability of 33 mD. However, the Lower Safa
reservoirs in the study area have a net effective pay range in thickness between 29 and 60 ft., an
effective porosity of 8.9%, and a hydrocarbon saturation of 75%. The geochemical characteristics of
the source rocks were evaluated to identify the organic richness, types of organic matter, depositional
environment, and maturity of the Jurassic source rocks based on the Rock Eval-6 pyrolysis analysis
(TOC, S1, S2, Tmax, HI, and OI) for seventy (70) ditch samples penetrated by five wells in the study
area. Results show that the Upper Safa source rocks are located in the late to overly mature stages and
lie in the gas generation stage, while the Lower Safa source rocks are located in the early to overly
mature stages and lie in the gas and oil generation stages. The main identified reservoirs in the area
are toped and sealed by the intra-formational shale intervals within the reservoirs themselves, and the
main traps are developed and controlled by the area structure. The current study used the above-
mentioned techniques of integrating geochemical and geophysical methods to identify the main
petroleum systems of the Jurassic sediments in the study area. The detailed analysis of the Upper and
Lower Safa reservoirs provides a comprehensive understanding of the petrophysical properties, which
are crucial for assessing the reservoir quality and potential. The calibration with measured samples
ensures the reliability and accuracy of the well-logged interpretations.

Keywords: Seismic Interpretation, Source Rocks Evaluation, Jurassic Sequences, and Formation
Evaluation,Westeren Desert, Egypt.

basins in the north western part of Egypt developed as
a rift basin, presented a rapid subsidence during the
Middle and Late Jurassic periods, which persevered

until the early Cretaceous period. (Metwalli, 2018).
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Many of the emerging lands of Northern Egypt were
submerged by the newly formed Tethys in Jurassic
period. North Africa has been moved toward Europe
in the Late Cretaceous and Early Tertiary, resulting in
the development of fault displacement, elevation, and
folding of the North Western Desert along the trend of
the Syrian Arc System (ENE-WSW). Moreover,
rifting events resulted in the creation of current sub-
rift basins, which align in a southwest to northeast
orientation and filled with shallow marine and
terrigenous derived sediment (Bosworth et al., 2015
and Guiraud et al., 2005). The Matruh basin, which
is one of these sub rift basins underwent inversion
throughout the Late Cretaceous to Early Cenozoic
period, resulting in the formation of fault propagation
folds oriented towards the NNE direction, which were
intersected by normal faults oriented towards the NW
direction (Moustafa, 2008).

The important of the present study is to integrate the
seismic interpretation, petrophysics, and geochemical
analysis, to evaluate the on situ dual formation, which
act as source and reservoir across the studied basin at
North Western Desert through applying these multi

approaches on the 7 wells of the current study. 1.1.
Location

The study area is in the northwestern part of the
Western Desert of Egypt, about 50 Km south of the
Mediterranean coast, between latitudes 30° 48"and 31°
06" N, and longitudes 27° 09" and 27° 28 E. It covers
about 967 Km? (EGPC, 1992) (Fig. 1). The study
area was discovered by drilling well 3. The finding of
this well led to the discovery of the whole Field
contains the studied wells, which produces gas and
condensate from the Upper and Lower Safa
reservoirs. The location of the studied wells are as the
following: (well.1 at X:739613mE, Y:304537mN;
well.2 at X:738845mE, Y:304250mN; well.3 at

X:738841mE, Y: 303753mN; well.4 at X:738007mE,
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Y: 306049mN; well5 at X:742137.6mE, Y:
302512.5mN; Well.6 at X: 738 761.88 m E, Y : 298
891.92 mN; Well.7 at X:733102.3mE.

1.1. Geologic Setting

The structural development of Egypt was influenced
by multiple tectonic events that reactivated the pre-
existing four primary structural trends in the basement
rocks , namely N-S, NE-SW, ENE-WSW, and E-W,
as recognized by (Hantar, 1990). The sedimentary
basins in the Western Desert have a complex geologic
history that dates back to the Pre-Cambrian era.
During the Pan-African orogenic events and before
the onset of Hercynian orogeny, the major fault zones
control the geological formations and created the
conditions for the later basins evolution, including the
deposition of continental clastics and shallow marine
carbonates. The Hercynian orogeny led to the creation
of intracratonic sags and rift basins. The Tethys
Ocean was formed during the Late Palaeozoic to early
Mesozoic period, and erosion occurred, which caused
the Palaeozoic rock layers to become thinner in the
north of the western desert and overlap around the
basement highs (Guiraud et al., 2005). The Khatatba
Formation sedimentary sequences found in many sub-
basins of the Western Desert. It lies directly above the
Palaeozoic Unconformity. This formation consists of
a mixture of Sili clastic materials and contains
reservoir sandstones around its base, which often
contain oil and gas (Keeley et al., 1990). The
Khatatba Formation consists of organic-rich shales
that are frequently found in layers above and below
each other that serve as seals, preventing the escape of
formation

hydrocarbons.  Consequentially, this

represents a typical petroleum system where
hydrocarbons are generated, trapped, and stored.
Traps of the Khatatba Fm are mostly faulted anticlines
that generated in the Early Cretaceous due to Rifting
reactivation (Bosworth et al., 2015, Yousef et al.,

2023).
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Fig. 1. (A). Location map of North Westerns Desert showing the main basins, structural features and the
location of the study area and studied wells (modified after EGPC, 1992 & Mansour at al.,
2022). (B): Base map generated in Petrel software shows the location of the studied wells.
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Fig. 2.

General stratigraphic column Egypt Western Desert showing the main tectonic events, depositional

sequences cycles, and depositional environment (modified after Schlumberger 1995, Abrams. et al.,

2016, & Ali, 2024, a).
3. Materials and Methods

3.1. Data

A number of 7 wells were available from the EGPC,
their coordinates are shown in the location map at
(Fig.1). A number of 70 drilling cutting samples were
available from 5 wells and have been analysed for
geochemical analysis to evaluate the source rock by
estimating the Total Organic Carbon (TOC,) kerogen
type, and hydrocarbon potential of these wells. The
samples were selected to cover the Jurassic section
and the investigated section ranges in thickness from
2123 ft-2925ft across the studied wells. The wells are
located in the north-western of north western desert,
and namely from well-1 to well-7 at coordinates
illustrated in (Fig.1). The wells have been drilled to
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reach a total depth of 16300 ft. Wireline logs of (GR,
Calliper, Porosity logs, Resistivity, PEF, Sonic logs),
for the 7 wells were available and used in formation
evaluation by estimating the petrophysical properties
of the target formation. Spectral GR was available in
one well (well-5) and used in identifying the clay
types through Schlumberger lithology cross plots. For
seismic interpretation work, a number of twenty two
2D seismic lines and check shot for three wells were
available to construct the average velocity maps,
TWT maps, and adjusted depth structure maps along
the investigated section.
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3.2. Formation Evaluation

Various types of geophysical data were analyzed to
identify the lithology, organic richness, and
petrophysical parameters of the Jurassic samples in
the studied well, as illustrated in the workflow (Fig.
3). Lithology, volume of shale, porosity, and water

saturation  were  determined  following the
methodology of Clavier et al., (1984), Asquith et al.,
(2004), Hakimi et al., (2012), Al-Areeq and Alaug
(2014), Osli et al., (2018), and Ali, (2024, a).
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Fig. 3. A workflow chart showing the steps followed for Jurassic section Formation Evaluation in the

studied wells (after, Ali, 2024, a & b).
3.3. Seismic Interpretation

The initial stage in seismic interpretation, seismic
well tie, is to estimate a link between seismic
reflections and stratigraphy. Some wells have sonic
log (i.e. formation velocity) and formation density
logs, at least across the intervals of interest, using
these logs; it is feasible to create a synthetic
seismogram displaying the seismic response for
correlation with the real seismic data. In addition,
some wells have Vertical Seismic Profiling (VSP)
data, which is produced by producing surface seismic
waves using a seismic generator, these waves are
recorded by geophones in the well. This method has
the ability to produce more exact linkage between
Depth conversion enables the transformation of
seismic data from the time domain to the depth
domain (Brown, 2004). This process follows
interpretation since seismic measurements are taken
in time, whereas well data are measured in depth. The
velocity was obtained using a check shot survey and

well and seismic data (Bacon et al., 2003). Tying
between seismic data (in time) and well data (in
depth) helps to find (seismic reflections) that
corresponds to geological formations. There are
basically two methods used to tie the seismic data and
geological features, the first is using check shot data
(time depth relation), and the second using synthetic
seismogram. The first method is the simplest but least
accurate (Badley, 1987). In current study, the second
method has been applied and synthetic seismogram
has been constructed in three wells, one of them is
illustrated in (Fig.4). After tying seismic lines with
the tops of well logs, picking horizons and fault
segments have been done and illustrated in (Fig.5).

transformed utilizing the Petrel 2017.3 software by
making velocity maps and depth conversion maps to
move the data between domains .Velocity maps are
used to convert two way time to depth, in order to
construct the structure depth maps for the Jurassic
section.
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3.3. Rock-Eval pyrolysis and total organic carbon
(TOC) content

A 0.5 gm weight was extracted from each sample of
the 70 cutting drill samples and subjected to a two-
step washing process using distilled water and a
dichloromethane (DCM) solution. The extracted
portion was then analyzed using the LECO C230
equipment to measure the weight percentage of total
organic carbon (TOC wt. %). Samples with a total
organic carbon (TOC) weight percentage more than
0.5 were subjected to an open system programmed
Bulk Rock-Eval pyrolysis utilizing the Rock-Eval 6®
Pyro-Analyzer. Additional information regarding the
Rock-Eval pyrolysis technique and its specific
parameters (S1, S2, S3, HI, and Ol) can be found in
the publication by (Behar et al., 2001).

3.4. TOC delta log R calculations from well Log

Passey et al., (1990) described the resistivity-porosity
overlay approach used to determine the TOC. The
exhibited curves are arranged in a manner that results
in their alignment in the non-source area. The interval
between these curves is typically termed as the delta
log R and is utilized for the detection of intervals rich
in organic matter. The calculation of organic richness
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may be achieved by applying a combination of
resistivity and one of the porosity logs, such as sonic,
density, or neutron. The total organic carbon (TOC)
for the analyzed wells are then calibrated with the
measured TOC. More details regarding implementing
the Passey et al. (1990)’s technique is illustrated in
(Ali, 2024, a).

4. Results and Discussions

4.1. Seismic Interpretation

The seismic data interpretation underwent various
stages. Initially, identifying the formation tops, which
obtained from the composite logs, and graphically
represent them on the synthetic seismograms of some
wells to find the miss tie between these wells and the
seismic sections. This interpretation encompassed the
entire study region, traversing all seven wells. The
interpretation proceeded through a series of
processes, beginning with the selection of horizons,
followed by the estimation of faults, the correlation of
faults, the determination of fault heaves, and finally
contouring.
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Fig. 4. Synthetic seismogram at well-1, shows seismic to well tie for the studied formation (generated in

Petrel 2017.3 software).
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Fig. 5. Interpreted Faults patterns of the 4 members of Khatatba Fm from the given seismic data

(generated in Petrel 2017.3 software).

The Jurassic Thickness

Many cross sections across the studied wells have
been taken to identify the thickness of each unit in the
Jurassic section. A base map show the location of the
taken cross sections is shown in (Fig.6).The Jurassic
sediments cross plots through the studied wells

showed that thickness increases in the North-East

direction and penchout in the NW direction, as shown
in (Figs. 7, 8, 9). Table (1) illustrate the thickness of
each unit in the Jurassic section along the studied 7

wells.
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Table. 1. Jurassic section thickness along the studied 7 wells in the area.

WELL

Formation Name

Thickness (Ft.)

Jurrasic Section

MASAJID

Well-1 MASAIJID 828 2123
Well-1 ZAHRA 229

Well-1 U.SAFA 757 Khatatba Section
Well-1 KABRIT 28 1296
Well-1 L.SAFA 281

Jurrasic Section

MASAIJID

Well-2 ZAHRA 217 2345
Well-2 U.SAFA 754 Khatatba Section
Well-2 KABRIT 28 1502
Well-2 L.SAFA 503

Jurrasic Section

Well-3 ZAHRA 216 2925
Well-3 U.SAFA 747 Khatatba Section
Well-3 KABRIT 24 2088
Well-3 L.SAFA 1101

Well-4 MASAIJID 819 Jurrasic Section
Well-4 ZAHRA 269 2319
Well-4 U.SAFA 698 Khatatba Section
Well-4 kabrit 37 1500
Well-4 L.SAFA 496

MASAIJID

Well-5 MASAIJID 807.95 Jurrasic Section
Well-5 ZAHRA 290 2585
Well-5 U.SAFA 685 Khatatba Section
Well-5 kabrit 36 1777.05
Well-5 L.SAFA 766

Jurrasic Section

MASAIJID

Well-6 ZAHRA 210 2655
Well-6 U.SAFA 709

Well-6 KABRIT 26 Khatatba Section
Well-6 L.SAFA 932 1876

Jurrasic Section

Well-7 ZAHRA 215 2409
Well-7 U.SAFA 731 Khatatba Section
Well-7 kabrit 35 1603
Well-7 L.SAFA 622
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direction, while the lower Safa member thickness decrease in NE direction.
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The average velocity, depth conversion, Two Way Time and Depth Structure Map of the upper Jurassic Masajed
Formation is illustrated in (Fig. 10).
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Fig. 10. Upper Jurassic Masajid Fm. (A): Faults Patterns, (B): Average Velocity map for Masajid horizon
C.1 =0.01ft/m.sec, (C): TWT structure map of Masajid horizon, C.1.: 10 ms, (D): Unfaulted depth
map, (E): Converted structure depth map, (F) Adjusted structure depth map.
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Fig. 11. Average Velocity map of the 4 members

C.1=0.01ft/m.sec.

The interpretation of twenty two 2D seismic lines in
the study area led to the identification of five
important reflectors which are Masajid, Zahra,
U.Safa, Kabrit and L.Safa. The average velocity,
TWT maps and structure depth contour maps that
reflect the complex structure setting of the study area
have been constructed from the interpreted reflectors
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: “ Upper Safa

2 Lower Safa

736000

of Khatatba Formation. Contour Interval

(Figs.10-17). The analysis of the study region reveals
a consistent trend of increasing overall thickness
towards the west, influenced by the area's structural
characteristics. Conversely, the thickness declines and
reaches its minimal value in the southwestern part of
the study area.
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Fig. 13. Adjusted structure Depth map (Faulted) cover the studied wells in the area of study.

4.2. Geochemical Evaluation

The geochemical evaluation of the Jurassic sediments
in the study area consists of two steps. In the
laboratory, we apply rock-eval pyrolysis to the cutting
drill  samples to the
parameters, including TOC, S1, S2, HI, Tmax, Ol,
of the studied wells (wells 1-7)

representing Jurassic sediments. The second step is to

determine geochemical

and so on,

calculate the total organic content (TOC) in the seven
wells in the northern part of the Western Desert using

the delta log R technique (Passey et al., 1990, 2010)
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and calibrate the geophysical output with the
measured values of the analyzed samples. Both Ol
versus HI and TOC versus S2 plots show that the
Lower and Upper Safa and Zahra members of the
Khatatba Formation in the studied wells have a gas-
prone kerogen type 111, with minor type-Il (Figs. 15 &
16). The relatively high Ol values for the Jurassic

section’s samples may be attributed to the mineral

matrix effect.
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Fig. 14. Adjusted structure Depth map (un-faulted) cover the studied wells in the area of study.

4.2.1. Source Rock (SR) Evaluation

The Early-Middle Jurassic Upper and Lower Safa
Shales are the main source rocks for hydrocarbon
generation and expulsion for the Jurassic reservoirs in
the study area. The analysis of ditch samples from the
five wells reveals that the Upper and Lower Safa
Shales exhibit very good SR. The average measured
TOC values for the Upper Safa source rocks are 3.44
wt.%, 2.83 wt.%, 2.24 wt.%, 8.55 wt.%, and 2.4 wt.%
in well-1, well-2, well-4, well-5, and well-7,
respectively. Similarly, the TOC values for the Lower
Safa source rocks are 2.42 wt.%, 3.31 wt.%, 12.3
wt.%, 5.58 wt.%, and 4.6 wt.% in well-1, well-2. Both

of these source rocks are type Il with minor mixed-

type (11-111) kerogen, which indicates the capability of
gas generation with a low amount of oil (Fig. 16). The
average Tmax values in the five wells range from 464
to 470 °C and 430 to 468 °C for the upper and lower
Safa source rocks, respectively. In addition, vitrinite
reflectance (%Ro) values of 1.33 to 1.5% and 1 to
1.36% for Upper and Lower Safa source rocks,
respectively, According to Peter's classification
(1986), the Upper Safa source rocks are located in the
late to overly mature stages and lie in the gas
generation stage, whereas the Lower Safa source
rocks are located in the early to overly mature stages

and lie in the gas and oil generation stages.
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Index showing kerogen type of the middle Jurassic section in the studied wells.
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Fig. 16. Cross plot of measured Total Organic Carbon (TOC %) versus remain hydrocarbon potential
(S2) Show the kerogen types of the Jurassic section.

4.2.2. Reservoir rock . . .
Eservoir roc SW direction. The Jurassic reservoirs’ seals are

. ) . o generally the intra-formational shale intervals of
The petrophysical evaluation of the Jurassic section in ]
. Upper and Lower Safa members themselves, while,
the area of study, which has been done for seven wells
. the shales of Zahra member and the carbonates of
in the northwestern desert, was carefully analyzed and N .
. . Masajid Formation act as overburden. The 4 elements
showed that there are two main reservoirs, the Upper )
] of petroleum system, (source-reservoir, seal, trap), are
and Lower Safa reservoirs. The results of all i . o
) complete in the Khatatba formation. It is important to
petrophysical parameters that were calculated from ] . ]
) ) emphasize that each unit of Khatatba Formation,
well logs and calibrated with the measured samples

from the 7 studied wells are illustrated in (Figs.17-23)
and tabulated in Table 2.

Upper Safa and Lower Safa act as a complete

petroleum system.

4.2.4. Petrophysical Evaluation
4.2.3. Petroleum system elements

) Density - Neutron Cross plots have been used to
Traps in the study area are developed by faults ) ) ] )
o ) identify the lithology as a first step in the
direction and mainly structural traps. Based on the

petrophysical evaluation. Using the procedures
explained in (Ali et al., 2023; Ali, 2024, a & b), all

the petrophysical properties for the current studied

constructed structure depth maps consisting of two
main fault blocks, the first one is the two up-thrown
fault block, in the East-West direction, and the second

] ] wells have been estimated. The effective porosity
fault block is the 3-way dip closures and take the NE-
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(PHIE_D) in the studied wells reaches the maximum
value of (15%) in well-3 at Upper Safa sand reservoir
towards the north-western direction, and the minimum
value of (3%) in well-5 at NE direction of the study
area. Highest permeability (PERM) in column 4 at
table.2 appears in the sand reservoir of Upper Safa at
well-1, followed by the sand reservoir of Lower Safa
at well-2. The Lower Safa sand reservoir in well-5
appear to be a tight reservoir, where it’s total porosity
(PHIT), (PHIE_D), and (PERM) are 5%, 3%, and
1.03mD respectively. It is important to highlight that
because of the high Vshale (Vsh-GR%), Arches’

equation has not been applied in the following
calculations, and the Indonesian equation, which
called Archie’s Indonesian, as it serves for the shale
effect in its first part and for the clean formation effect

(Archie’s term) in the second part.

1 v, Ven)/2
Re1/2 1/2

$N—D™/2 n/2
1z Pw

Where, Ry, = The deep resistivity reading in shale
bed.

Table. 2. Petrophysical Evaluation of the two sand reservoirs in the Jurassic section.

WELL Reservoir | ZONE_NAME | PERM

U.SAFA

L.SAFA
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Fig. 17. Well-1 petrophysical evaluation of the middle Jurassic Khatatba Fm. Good match appears in last
track between the calculated TOC from well log and the measured TOC.
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Fig. 18. Well-2 Petrophysical Evaluation of the middle Jurassic Khatatba Fm. Excellent match between
the estimated total porosity from well log and the measured core porosity, in track (8). The
estimated permeability from logs is in great match with the core measured permeability in track

9).
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Fig. 19. Well-3- Petrophysical Evaluation of the middle Jurassic Khatatba Fm. Good match between the
estimated TOC from well logs and measured TOC appears in track (11).

Egypt. J. Geo. Vol. 68 (2024)



254

Walaa A.Ali

Depth
(?R') GR

BS

in 16 [0
CALI

VSH_GR

RHOB NPHI

RHOB

LLD

OHMM 2000
LLS

PHIT
PHIT

195 G/G 295
NPHI

OHMM 2000 | O
MSFL hd

v/v 0.3

CPOR *

1:1000| API 200

6

in 16 |0

Ly

7

Lo

15300

15400

F15500-]

F15600-]

15700

14400
F14500
14600
14700
14800
14900
15000
15100
15200

T

s ey e A st gy

i T

i
]
I
1

i

v/v

1 [0.45 decp -0.15

-

OHMM 2000 | O

Fig. 20. Well-4- Petrophysical Evaluation of the middle Jurassic Khatatba Fm. Good match appears in
track (7) between the estimated porosity from log and the measured core porosity, and in track

v/v 0.3

0 v/v

1 [0 unitless 2] 0

(10) between estimated permeability from logs and the core measured permeability.

Egypt. J. Geo. Vol. 68 (2024)




FORMATION EVALUATION AND SEISMIC INTERPRETATION OF THE JURASSIC SEDIMENTARY SECTION ... 255

PHIT_ SAND
G HURA_2
0 (@G RHOB/NPHI 0
HCAL_2 RHOB 2 LLD_2 HTHO = . hes_nerraclPHIT_SHALE
Depth 6 inch 16 |0 1.95 G/C2 2.95|0.2 OHMM 2000 0 25 [ 2 umess o 0 wfv 0.3
/) GR VSH_GR NPHI MSFL HFK PEF_ 2 | xwararan rova X pav_ner_risd PHIT_SAND
1:1200 [0 API 150 | O V/V 1 [045 v decms ©15|0.2 OHMM 2000 0 10 [° ‘7o 1[0 wvos[0 1|0 10 o wies [0 v/v 0.3
: = -
T | >
.
g ——
oY ~
+ I~
‘> L“'I—
T -
z fored
LY = o
o
&

T

g
At
y'J

W‘IT\NW (]“\W{.\frff"ﬂ fd, MLMW\‘M’hMF\M.V'TW

*

sy Vo~

My

*
VL

aIL N

BV

e

Fig. 21. Well-5- Petrophysical Evaluation of the middle Jurassic Khatatba Fm. Good match between the
calculated and measured TOC in track (12).
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Fig. 22. Well-6- Petrophysical Evaluation of the middle Jurassic Khatatba Fm.
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Fig. 23. Well-7- Evaluation of the middle Jurassic Khatatba Fm.
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Conclusions

= Integrated organic geochemical and seismic
interpretation were made on the Jurassic Section
of north western desert through 7 wells located
in  Matruh concession, to investigate its
petroleum system elements. Results indicate that
the Khatatba Formation shows obvious in situ
dual source and reservoir characteristics. This is
related to the oscillations in sedimentation,
which resulted in alternating deposition of
organic-poor coarse clastic reservoirs during
semi-humid conditions and deposition of
organic-rich fine clastic and carbonate source
rocks during semi-arid conditions. This behavior
of sediments alteration was interpreted from GR
and Density-Neutron logs.

= Hydrocarbon charge at the location of the
studied wells believed to be sourced from the
mature Khatatba shale source rock intervals,
which top up the clastic reservoirs. These source
rocks are now thermally mature to generate
mostly gaseous hydrocarbons, which s
confirmed by the maturation proxies and actual
shows in the mud log. The thermal maturation of
these source rocks was connected to the
tectonically driven subsidence events, which
were related to the Late Jurassic and Cretaceous
Tethyan rifting.

= The geochemical analysis of Jurassic sediments
revealed that the Zahra, U.Safa, and L.Safa
formations exhibit high levels of total organic
carbon (TOC) and maturity values. Additionally,
based on the wells locations there is a consistent
pattern of increasing TOC content in the
sediments as one moves from the North to the
North-East direction, which aligns with the trend
of increasing thickness observed in the Jurassic
sediments at the study area.

= The prospect area has direct access to mature
source rocks within the studied part of the north
western desert, which contains the mature
Middle Jurassic Khatatba Formation source
rocks. The varying petrophysical characteristics
and geomechanically complications of the
Upper and Lower Safa sandstone reservoirs
necessitate studying other parts in the Matruh
concession to better understand their regional
hydrocarbon production potential.

® For future development in the area, shale

intervals in the 7 wells consider also as shale gas
pay zone, which can be identified in the studied
wells using basin related cut-offs, where gas
shale reservoirs are characterized by high to
moderate Gamma Ray (GR) values (>70 API),

moderate resistivity (>10 ohm.m) which may
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indicates the presence of hydrocarbon, moderate
Average Brittleness (>0.3), and High TOC
(>2%).
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