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ABSTRACT 

Remote sensing images are widely used in many geological applications; in our research we used remote 
sensing techniques for lithological mapping and mineral exploration through extracting the alteration zones 
with integration of lineaments density in the study area. 

For lithological mapping; False Color Composite (FCC), Color Ratio Composites (CRC) and Principal 
Component Analysis (PCA) techniques were used. To extract the alteration zones; Spectral ratio indices, 
Constrained Energy Minimization (CEM) and spectral signature based supervised classification techniques 
named Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) have been applied on 
ASTER data. At last, the final alteration map is integrated with lineament density map and the locations of the 
old gold mines in the area for introducing the probable potential areas for gold exploration. 
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INTRODUCTION 

Gold mineralization is widely distributed in the Arabo-Nubian Shield and its genesis is discussed in 
several works (Garson and Shalaby, 1976; EI-Gaby et al, 1988). Most of these Au deposits are hosted by 
intrusives, volcanics, ophiolitic rocks and post-orogenic granites.More than 95 gold occurrences are known in 
the Eastern Desert of Egypt, these are reviewed by Hume (1937), El Ramly et al., (1970) and Sabet et al., 
(1976). They have been discovered, explored, and/or mined since the Pharaonic time. Gold deposits of the 
Arabian-Nubian Shield have for a long time been an important association and promises to continue to be 
important (Abdelsalam et al., 2000).  

Traditionally, lithological mapping and mineral exploration has depended on several prospecting 
techniques including geochemistry, geophysics, geological mapping, interpretation of aerial photos and 
ground surveys (Chica-Olmo et al., 2002). Lithological units and structural features represent significant data 
sources for mineral exploration (Brandmeier, 2010).  

Recently, satellite images have been widely used successfullyfor geological applications including 
lithological mapping and delineating alteration zones which contain minerals and ore deposits of economic 
potential. Salem (2013) used remote sensing techniques for detecting gold in listwanite alteration at 
Barramiya area, the southern extension of the study area. Abou El-Magd et al., (2015) used ASTER data for 
gold exploration in El-Sid area. In the present study, lithological mapping, alterations mapping, lineament 
detection were performed on ASTER data to define the alteration zones for gold deposits. Several remote 
sensing techniques including False Color Composite (FCC), Color Ratio Composites (CRC) and Principal 
Component Analysis (PCA), Spectral ratio indices, Constrained Energy Minimization (CEM) and spectral 
signature based supervised classification techniques named Spectral Angle Mapper (SAM) and Spectral 
Information Divergence (SID) along with automatic lineament extraction technique have been applied on 
ASTER data.  
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STUDY AREA 

The study area (Fig.1) is located about 88 Km west of the Red Sea coast, along the Qift-Quseir 
highway in the Eastern Desert of Egypt. The area lies between latitudes 25° 56' 20" -26° 03' 40"N and 
longitudes 33° 30' 30" - 33° 40' 30"E. 

Fig.1: Location map 
of the study area. 

 

GEOLOGICAL SETTING 

The area includes ophiolitic rocks, Hammamat molasse sediments, Dokhan Volcanics, felsites, older 
and younger pink granites (Fig. 2). The ophiolitic rocks are composed of ultramafic rocks (serpentinite), 
mafic plutonic rocks (metagabbro), and metavolcanics (metabasalt) (El-Sayed et al., 1999) and they are 
intruded by the younger granite of the fawakhir pluton. The contacts between the serpentinites and the 
adjacent rocks are sharp, distinct and marked by a deep thrust fault trending N–NW (Harraz and Ashmawy 
1994). Metagabbros constitute a major part of the Fawakhir ophiolite suite and have suffered regional 
metamorphism up to greenschist facies (El-Sayed et al., 1999). Hammamat molasses sediments occupy 
almost the western part of the study area, the Hammamat sediments are found to be intruded by the 
younger granites of the Um Had pluton at the northwestern part of the study area. 

DATA AND METHODS 

ASTER level 1b image acquired by the joint American-Japanese satellite on board Terra platformon 
7th, October2007, was used in this study. Different processing techniques have been carried to achieve the 
aim of the study. 

Pre-processing of the ASTER data 

Most satellite images are in the form of digital data. Digital image is therefore stored on a series of 
digital numbers (DNs), Digital numbers (DNs) range from 0 to 255 in the gray-scale intensity values 
(Sabins, 1997).Therefore, because the image in the digital format exists as a simple array of numbers 
within the computer, various mathematical procedures were performed to make the data more usable for 
further processing techniques. 
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Fig. 2: Geological map 
of the study area 
(bounded by the red 
frame) (after Greiling 
et al 2014). 

Geometric Projection (Georeferencing) of the data 

This function was used to ensure that the satellite image is rectified to the actual coordinates on the 
ground; consequently, all the spatial and the geographic data will be correctly overlain and fit the ground 
coordinates. Fortunately, ASTER level 1b data is provided geometrically registered, but the scene is path-
oriented and deviated from the north about 9 degrees to the east, so, it needs to be rectified to fit the north 
in a process called northing up 

(https://lpdaac.usgs.gov/sites/default/files/public/aster/docs/ASTER_GeoRef_FINAL.pdf). 

Cross talk correction 

A cross talk signal scattering problem inthe SWIR sensor of the ASTER data is common, the light 
incident to band 4 and band 9 is reflected at the detector and the filter boundary then, transported to other 
bands by multiple reflections in the focal area. A crosstalk correction algorithm is developed to improve 
the spectral separation performance of SWIR. 

Calibration from digital numbers to spectral radiance then to spectral reflectance 

The raw satellite data comes as digital numbers assigned to each pixel in the image, these digital 
numbers are converted to spectral radiance, the spectral radiance is then converted to spectral reflectance, 
such conversion processes is carried out through a set of complicated mathematical equations.Thanks to 
ENVI software, we managed to convert DNs to spectral reflectance with no need to perform the 
mathematics manually. 

Atmospheric correction of the data 

This processes is very important as it involves converting the top of atmosphere (TOA) reflectance to 
the surface reflectance by removing the atmospheric actions that cause errors in the spectral reflectance of 
objects due to the interaction of the incident and reflected energy through the atmosphere with the 
atmospheric gases such as CO2 and water vapour, also dust particles causesuch atmospheric problems, so, 
atmospheric correction was performed using the FLAASH module of ENVI v.5.1 to ensure pure surface 
reflectance for accurate processing.  

Spatial resolution merge 

The spatial resolution is the pixel size (the smallest unit in the image). The ASTER subsystems (VNIR, 
SWIR and TIR) have different spatial resolutions, the VNIR subsystem is 15m, the SWIR subsystem is 
30m and the TIR subsystem is 90m. The resolution merge function was used to merge the higher 
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resolution data (VNIR 15m) with the lower resolution data (SWIR) to obtain higher spatial resolution for 
the SWIR data.As a result of using this function we got the SWIR data 15m instead of 30m. 

Area of interest 

Since the ASTER scene is larger than the area of interest as, one ASTER scene covers (60 Km * 60 
Km), the subset function was used to trim out the undesirable areas from the scene and leave only the area 
needed for the study to make it easy and fast for further processing and to reduce the volume of the 
resulting on the hard disk of the computer. 

Processing techniques applied to the ASTER data 

After performing the pre-mentioned preprocessing steps, the ASTER data is now ready for the image 
processing techniques available for achieving the purpose of our study. Band selection techniques for 
selecting the best band triplets for false color composites (FCC), Color Ratio Composites (CRC), Principal 
Component Analysis (PCA), Constrained Energy Minimization (CEM), spectral ratio indices and the 
signature based supervised classification techniques named Spectral Angle Mapper (SAM) and Spectral 
Information Divergence (SID) techniques, these techniques were integrated along with the automatic 
lineament extraction from the ASTER imagery which have been used as well. 

RESULTS 

Bands Selection for False Color Composite (FCC) images 

A particular aspect of remote sensing is that it provides data in multiple spectral bands. ASTER data 
contain fourteen spectral bands. To display a FCC image only three bands are required in a band 
combination, each directed to one of the three color-guns; Red, Green and Blue (RGB). So, we have a 
wide range of possible triplet band combinations, we used formula (1) retrieved from 
(mathforum.org/library/drmath/view/59185.html) to calculate the number of possible band combinations 
from the nine bands of the VNIR-SWIR ASTER data. 

૜൯ࡺ൫	ݏݐ݈݁݌݅ݎݐ	݀݊ܽܤ ൌ
!ࡺ

ሺ૜!∗ሺିࡺ૜ሻ!ሻ
    Formula (1) 

Where, N is the total number of bands, for the nine bands of the ASTER VNIR-SWIR subsystems, 
there are 84 possible combinations.  

Selection of appropriate band triplets for the False Color Composite (FCC) images was performed in 
two different ways; the correlation coefficient method and the Optimum Index Factor (OIF) method. The 
less correlated bands are good for image visualization in RGB color space (Drury, 1993). 

Correlation coefficientmethod 

The correlation coefficient is a statistical method that is used to determine the strength of the linear 
relationship between variables. The smaller the correlation coefficient, the larger the variance in the data 
and vice versa. The correlation matrix of the nine VNIR-SWIR bands is presented in Table (1).  

Table1:CorrelationcoefficientofASTERVNIR-SWIRdataofthestudy area. 

 
B1 B2 B3 B4 B5 B6 B7 B8 B9 

B1 1
B2 0.996 1 
B3 0.993 0.998 1 
B4 0.971 0.977 0.981 1
B5 0.981 0.984 0.987 0.990 1
B6 0.977 0.982 0.984 0.983 0.992 1
B7 0.953 0.958 0.961 0.976 0.969 0.963 1
B8 0.958 0.964 0.968 0.982 0.975 0.969 0.993 1
B9 0.971 0.974 0.976 0.988 0.983 0.976 0.985 0.991 1 
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From the results of the Correlation Coefficient method, a positive correlation has been observed 
between the nine ASTER VNIR-SWIR bands (Tables1&2).But bands 1, 2, 7 and 8 are relatively fewer 
correlations with the other reflective bands.T h e  best ten band triplet possibilities are given in Table (2) in 
descending order. 

Table 2: Correlation coefficient method ranking of the best band triplet selection of the ASTER data of the 
study area. 

Band Triplet Correlation coefficient Rank
1,6,7 2.892882 1 
1,4,7 2.899963 2 
1,5,7 2.902785 3 
1,7,8 2.903216 4 
2,6,7 2.903290 5 
1,6,8 2.903799 6 
1,3,7 2.906087 7 
1,2,7 2.906341 8 
1,7,9 2.908068 9 
3,6,7 2.908123 10 

Optimum Index Factor (OIF) 

OIF is a statistic calculation of every possible three-bands rendered as R-G-B. It is developed by 
Chavez et al (1982 & 1984). The OIF technique was applied to ASTER VNIR-SWIR nine bands. The best 
ten band triplet possibilities were ranked indescending order (Table 3). The higher the OIF values, the 
more the information content. So, triplets with higher values of OIF were used for better extraction of 
lithological information since they use bands with highest variance and least redundancy (Qaid and 
Basavarajappa, 2008).  

Table 3: OIF rankingof VNIR-SWIR data of the studyarea. 
Band Triplet OIF Rank 

1,2,3 47.94864204 1 
1,2,4 38.77910803 2 
1,2,7 36.59802721 3 
1,2,8 36.15756466 4 
1,2,5 36.08277367 5 
1,2,6 36.07930166 6 
1,2,9 35.64442541 7 
1,3,4 35.21589781 8 
2,3,4 33.76479559 9 
1,3,7 33.00345688 10 

The analysis of the highest band-triplet ranks obtained from both the methods yielded that, only (7, 2 
and 1) and (7, 3 and 1) band triplets were in the best ten ranks of both the two used methods, while the 
other eight band triplets are different in one method than that in the other one. Bands 1 and 2 are almost in 
allthe band triplets obtained from the optimum index factor method, while, in the correlation coefficients 
method there are better representation of almost all the ASTER VNIR-SWIR bands. So, the correlation 
coefficients method is better than the optimum index factor method in this study. 

Visual inspection yielded that the RGB false color composite images (7, 6 and 1) from the correlation 
coefficient method, (4, 2 and 1) from the OIF method and (7, 3 and 1) from both methods; are the best for 
extracting the lithological information (Figs. 3a, b &c).  

Band ratio: Color Ratio Composites (CRC) 

Ratio images are obtained by dividing the DN in one band by the corresponding DN in another band 
for each pixel, stretching the resulting value, and plotting the new value as an image (Sabins, 1997). 
Rationing is an effective method for distinguishing among rock types because it removes first-order 
brightness effects due to topographic slopes and enhances subtle color variations between materials 
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(Abrams et al., 1983). Band ratio images are used to suppress the topographic variation, and the brightness 
difference related to grain size variation (Sultan and Arvidson, 1986).  

In the present study, two color ratio composites were tested and found to be the best composites for 
discriminating the lithological units and alteration zones. The first one is (4/7, 3/4 and 2/1) for RGB 
respectively (Fig. 4a), this ratio is equivalent to Abram’s ratio (5/7, 4/5, 3/1) of Landsat TM (Abrams et 
al., 1983) which was used by Abdeen et al., (2001) for mapping serpentinite, granite and marble units of 
the Neoproterozoic Allaqi Suture in southern Eastern Desert of Egypt. The second ratio is (4/7, 4/1and 
2/3*4/3) for RGB respectively (Fig. 4b), which ratio is equivalent to Sultan’s ratio (5/7, 5/1, 3/4 * 5/4) of 
Landsat TM (Sultan and Arvidson, 1986). 

The rock units that are successfullymapped using these ratios include serpentinite, granite, Hammamat 
molasse sediments, felsite, metagabbro, Dokhan Volcanics and melange rocks. For validation of the 
adopted ASTER band-ratios images, Principal component analysis (PCA) technique is used. 

Principal Component Analysis (PCA) 

PCA is a statistical technique used to reduce the redundancy between the spectral reflectance of the 
bands.Multispectral image bands are often highly correlated, i.e., they are visually and numerically similar 
(Schowengerdt, 2007). Important geologic information might occupy only a small portion of the spectral 
range of one band that is otherwise highly correlated with other bands; it is possible that such information 
will be lost through one of these other bands being chosen instead. 

Fig. 3a: ASTER FCC image 7, 6 
and 1 in (RGB) respectively. 

Fig. 3b: ASTER FCC image 4, 2 
and 1 in (RGB) respectively. 
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Fig. 3c: ASTER FCC image 7, 
3 and 1 in (RGB) respectively. 

 

 

Fig. 4a: ASTER band ratio 
(4/7, 3/4, 2/1) RGB (modified 
after Abrams et al, 1983). 

Fig.4b: ASTER band 
ratio (4/7, 4/1, 2/3 * 4/3) 
RGB (modified after 
Sultan et al, 1986). 
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In Principal Component Analysis most of the variance in multispectral data is compressed into almost 
three or four principal component images while, noise may be accumulated in less correlated principal 
component images (Abou El-Magd et al., 2015). 

The first PC image contains data with highest variance and least correlation, unlike, the last PC image 
which contains data with least variance and high correlation and appears noisy and one cannot define it’s 
features (Figs. 5a & 5b). 

 

Fig. 5a: the first principal component 
image (PC1), the image features are clear. 

 

Fig. 5b:The last principal component 
image (PC9), the image appears noisy 
and the features are not clear. 

 

From the analysis of the eigenvector matrix (Table 4) of the ASTER VNIR-SWIR data, PC1, 2, 3and 4 
contains 99.181 % of the information content of the data while the other PC bands contains only 0.819 %. 
PCA color composites PC3, PC2 and PC1 (Fig. 6a) and PC4, PC2 and PC1 (Fig. 6b) were used as they 
contain the most informative data with maximum variance and helped in delineating the contacts between 
the rock units in the study area. 

Table 4: Eigenvector matrix and loadings of principal component analysis on ASTER. 
  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

V
N

IR
 Band1 0.985 0.170 0.005 -0.006 -0.003 0.008 -0.0003 0.001 0.001 

Band2 -0.170 0.984 0.030 0.031 0.011 -0.009 0.004 0.0006 -0.0009 
Band3 0.0001 -0.030 1.000 -0.006 -0.002 0.007 0.0001 0.001 0.001 

S
W

IR
 

Band4 -0.011 0.029 -0.005 -0.999 0.013 -0.020 0.003 -0.002 -0.002 
Band5 0.001 -0.007 -0.0008 0.005 0.949 0.314 -0.002 0.003 0.003 
Band6 -0.010 0.011 -0.007 -0.023 -0.314 0.949 0.015 0.0004 -0.003 
Band7 0.001 -0.004 -0.0001 0.003 0.006 -0.013 1.000 0.009 0.004 
Band8 0.001 0.0006 0.001 0.002 0.002 0.001 0.009 -1.000 -0.001 
Band9 -0.002 0.0008 -0.001 -0.003 -0.004 0.002 -0.004 -0.001 1.000  

Eigenvalue 136.06 8.77 2.06 1.01 0.36 0.35 0.21 0.18 0.12 
Information % 91.242 5.881 1.381 0.677 0.241 0.235 0.141 0.121 0.081 

Sum of Information % 100% 
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The results of false color composites (FCC), color ratio composites (CRC) and principal component 
analysis (PCA) techniques have been integrated and have shown significant identification of lithological 
units in the studied area (Fig. 7a), resulting in the remote sensing based geological map (Fig. 7b). 

Fig. 6a: ASTER false 
color composite (PC3, 
PC2, and PC1) in RGB 
respectively 

Fig. 6b ASTER false color 
composite (PC4, PC2, and 
PC1) in RGB respectively 

 

Extracting the alteration zones using ASTER data 

Several remote sensing techniques have been integrated to extract the alteration zones in the study area 
from the ASTER data, the used techniques are the following:  
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Fig. 7a: ASTER false color 
composite (PC4, PC2, and PC1) 
RGB image overlain by the 
lithological boundaries. 

Fig. 7b: Remote 
sensing based 
Lithological map of 
the study area (Final 
result). 
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Band ratios and spectral ratio indices  

Band ratios and spectral ratio indices proved to be very useful for qualitative detection of hydrothermal 
alteration minerals. This technique has been widely used in geological mapping by different authors (Gad 
and Kusky, 2007; Amer et al, 2010; Abou El-Magd et al, 2014).  

Furthermore, the mineralogical spectral ratio indices proposed by Ninomiya (2003) we used for 
identifying alteration zones, the formulas of the indices are:  

 OHI = (band7/band6)*(band4/band6)  

 KLI = (band4/band5)*(band8/band6)  

 CLI = (band6/band8)*(band9/band8)  

Where OHI is OH-bearing mineral index, KLI is kaolinite index, CLI is calcite index. These minerals 
are common in hydrothermal alteration zones; they can be used as a sign to define where exactly 
hydrothermal alterations are and define its spatial distribution. The spectral ratio indices are overlain one 
on another on ASTER SWIR band 6 (Fig. 8). 

Fig. 8: Alteration zone mapping 
using spectral ratio indices 
overlain on ASTER band 6. 

Constrained Energy Minimization (CEM) 

The CEM algorithm attempts to maximize the spectrum response of a target and suppress the response 
of all the other features and consider them as the unknown background. It enabled to identify six alteration 
minerals which are the main alteration minerals in the rock units of the study area as proved by the 
microscopic studies by Mohy, 2014, these alteration minerals are alunite, kaolinite, sericite, chlorite, 
calcite and montmorillonite from the ASTER VNIR-SWIR surface reflectance data. The spectral 
signatures of these six alteration minerals were derived from the United States Geological Survey (USGS) 
spectral library (Fig. 9a) embedded in the ENVI software, after being resampled to match the wavelength 
range of ASTER VNIR-SWIR spectral bands (Fig. 9b). This technique resulted in the abundance of these 
six alteration minerals in the satellite image (Fig. 10). 

The abundance image shows that the distribution of these alteration minerals is highly correlated with 
the alteration zones extracted from the mineralogical spectral ratio indices method (Fig. 8). The result of 
the alteration minerals resulted using CEM technique was found to be more sharp and clearer to interpret 
than the image produced by the mineralogical spectral ratio indices method. However, the CEM technique 
did not perform well in conditions where the background signature is not easily detected, therefore, fails to 
identify rare minerals (e.g. secondary iron-rich parts of the alteration) that are not spatially dominant in the 
satellite image (Gabr et al., 2010). 
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Fig. 9a: USGS 
typical spectral 
signatures of the 
alteration minerals 
(montmorillonite, 
sericite, kaolinite, 
alunite, calcite and 
chlorite). 
 

 

Fig. 9b: Resampled 
spectral signatures of the 
used alteration minerals 
after USGS Spectral 
Library. 

Fig. 10: Alteration 
minerals 
abundance image 
usingthe CEM 
technique overlying 
ASTER band 6. 
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Supervised classification of ASTER reflectance data 

The alteration zones in the study area were mapped from the ASTER reflectance data based on user 
defined reference spectra, the supervised classification methods used are the Spectral Angle Mapper 
(SAM) and Spectral Information Divergence (SID) techniques.  

Spectral Angle Mapper (SAM) Classification 

SAM is a physically-based spectral classification technique that uses an n-D angle to match pixels to 
reference spectra (endmembers). It determines the spectral similarity between two spectra by calculating 
the angle between the spectra and treating them as vectors in a space with dimensionality equal to the 
number of bands. We used the reference spectra (endmembers) of the same six alteration minerals used in 
the CEM technique. SAM compares image spectra to the user defined spectra (Kruse et al., 1993) in n-D 
space. Smaller angles represent closer matches to the reference spectrum. Pixels further away than the 
specified maximum angle threshold in radians are not classified. 

The SAM results indicated that the dominant minerals are montmorillonite (red color), kaolinite (green 
color), alunite (blue color) and calcite (pink color) in the rocks of granite, serpentinite and the mélange 
rocks, while sericite (yellow color) dominates in the Dokhan Volcanics and chlorite (cyan color) 
dominates in metagabbros and in some locations of felsites (Fig. 11). 

Spectral Information Divergence (SID) 

Spectral Information Divergence (SID) is a spectral classification method that uses a divergence 
measure to match pixels to reference spectra. The smaller the divergence, the more likely the pixels are 
similar. Pixels with a measurement greater than the specified maximum divergence threshold are not 
classified. Endmember spectra used in the SID classification method are those of the USGS spectral 
library used in the CEM and SAM. 

The maximum divergence threshold was tested by assigning different values for each alteration 
mineral to get the best classification results. The SID results indicated that the dominant minerals are 
sericite (yellow color), montmorillonite (red color), kaolinite (green color), alunite (blue color) and calcite 
(pink color) in the rocks of granite, serpentinite, Dokhan Volcanics, felsites and in some locations of 
metagabbro and Hammamat molasse sediments (Fig. 12). 

Fig. 11:SAM Supervised 
classification technique 
using resampled USGS 
spectral signatures 
overlying ASTER band 
6. 
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Fig. 12: SID Supervised 
classification technique 
using resampled USGS 
spectral signatures 
overlying ASTER band 6. 

The comparison between the SAM and SID classifications indicated that: 

i. The alteration zones have the same locations in SAM and SID classifications. 
ii. Montmorillonite is dominant in SID classification whereas sericite shares the dominancy with 

montmorillonite in SAM classification. 
iii. Kaolinite is well determined by the SID classification and slightly appeared in the SAM classification. 
iv. The absence of alteration minerals in wadi deposits in both SAM and SID classifications. 

Lineament extraction and relationship to gold mineralization 

A lineament is a mappable linear or curvilinear feature of a surface whose parts align in a straight or 
slightly curving relationship. They may be an expression of a fault or other line weakness (Hung et al., 
2005). Satellite remotely sensed data has been widely used as source of information for geologists to map 
lineaments. 

Lineament extraction from ASTER imagery 

Identification of lineaments from satellite images can be achieved effectively by using two techniques: 
1) Visual interpretation, lineaments have been visually detected using image enhancement techniques 
(image ratio, image fusion, directional edge-detection filters) and a lineament vector map can be produced 
using manual digitizing techniques (Arlegui and Soriano, 1998; Suzen and Toprak, 1998). 2) Auto 
detection, a lineament map is produced using computer softwares and algorithms (Burdick and Speirer 
1980, Karnieli et al., 1996; Baumgartner et al. 1999, Hung et al. 2002, 2003, Kim et al. 2004). 

In the present study, automatic lineaments extraction have been carried out using the most widely used 
software for such purpose (the LINE module of the PCI Geomatica package using the default parameters 
with adjustment of the Edge gradient threshold to 40 pixels). The algorithm of extraction consist of edge 
detection, thresholding and linear extraction steps. After testing the data, the best band for automatic 
lineament extraction was the First principal component band (PC1). Higher resolution imagery results in 
higher quality of lineament map (Hung et al., 2005). On this basis the PC1 is fused to get higher spatial 
resolution (15m). The visual inspections of the extracted lineaments have been carried out for editing and 
eliminating the false (incorrect) lineaments such as roads, routs, buildings and any manmade features. The 
automatically extracted lineaments are shown in (Fig. 13) after being edited for elimination of the 
manmade features. 
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Lineaments Density 

Lineaments are commonly analyzed using lineament density maps (Zakir et al., 1999). In this research 
we calculated lineament density (Fig. 14) automatically using the Arc GIS v. 10.3 software on basis of the 
number of lineaments per unit area (number/km²). Then the resultant lineament density map is contoured 
using the same software, in the lineament contouring map (Fig. 15) higher densities are represented by red 
color and they are assumed to represent a higher level of fracturization of the rock that is considered to 
have relation to the degree of mineralization. 

Fig. 13: Automatically extracted 
lineaments from the ASTER image 
using PCI geomatica software. 

 

Fig. 14: Lineament 
densitymap. 

Fig. 15: Lineament 
contouringmap,higher 
densities are represented 
byredcolor. 
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Lineaments are zones of deformation and fracturing, which implies that they are zones of higher 
secondary porosity. As these zones become significant channel-ways for migration of fluids (Gupta, 
2003). So the coincidence of high density lineaments and alteration zones indicate high probability for the 
presence of gold mineralization. Hence, the lineament density map will be more useful when it is 
combined with other information regarding the alteration zones in the area which have been successfully 
mapped using several approaches. 

Overlying the locations of the old gold mines in the study area validates the results; we found that there 
is a complete harmony between the sites where the old gold mines in the area of study were already 
opened and the areas where the alteration minerals are present along with high lineaments density (Fig. 
16). 

 
Fig. 16: Lineaments density contour and old mines locations overlying the CEM technique, 
higherdensities are represented byredcolor, all the layers are overlying ASTER band 6. 

CONCLUSION 

Several criteria were carried out in this study including lithology, lineaments density and alteration 
zones. These criteria were prepared using different remote sensing techniques including False Color 
Composites (FCC), Color Ratio Composites (CRC) and Principal Component Analysis (PCA) for 
delineating the lithological units in the study area. While, the spectral ratio indices, Constrained Energy 
Minimization (CEM), Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) were 
used effictively for alteration zone extraction. CEM, SAM and SID gave successful results in the 
separation of the alteration zones through detecting the alteration minerals (Kaolinite, Alunite, 
Montmorillonite, Chlorite, Calcite and Sericite) and locating the spatial distribution of them in the study 
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area. These alteration zones represent the highest important factor in this study. The final alteration map is 
integrated with the automatically extracted lineaments along with the locations of the old mines in the 
study area; these factors were integrated to define the potential areas for gold mineralizationOn the basis 
of presence of alteration minerals in areas with high lineaments density in suitable rock units, four 
potential areas for gold exploration have been proposed (Fig. 16). Abu El-Magd et al., 2015 used the same 
techniques for the eastern part of the study area and concluded that there are two potential areas for gold 
exploration, in this study, two more new probable areas for gold exploration have been introduced (Fig. 
16). Concerning the western part which is occupied mainly by the Hammamat molasse sediments and Abu 
Had granitic intrusion there are no potential areas for gold exploration. 
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